Research
Title: | Malonylome Analysis Reveals the Involvement of Lysine Malonylation in Metabolism and Photosynthesis in Cyanobacteria |
---|---|
First author: | Ma, Yanyan; Yang, Mingkun; Lin, Xiaohuang; Liu, Xin; Huang, Hui; Ge, Feng |
Journal: | JOURNAL OF PROTEOME RESEARCH |
Years: | 2017 |
DOI: | 10.1021/acs.jproteome.7b00017 |
Abstract: | As a recently validated reversible post translational modification, lysine malonylation regulates diverse cellular processes from bacteria to mammals, but its existence and function in photosynthetic organisms remain unknown. Cyanobacteria are the most ancient group of photosynthetic prokaryotes and contribute about 50% of the total primary production on Earth. Previously, we reported the lysine acetylome in the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). Here we performed the first proteomic survey of lysine malonylation in Synechocystis using highly accurate tandem mass spectrometry in combination with affinity purification. We identified S98 lysine malonylation sites on 339 proteins with high confidence in total. A bioinformatic analysis suggested that these malonylated proteins may play various functions and were distributed in diverse subcellular compartments. Among them, many malonylated proteins were involved in cellular metabolism. The functional significance of lysine malonylation in the metabolic enzyme activity of phosphoglycerate kinase (PGK) was determined by site-specific mutagenesis and biochemical studies. Interestingly, 27 proteins involved in photosynthesis were found to be malonylated for the first time, suggesting that lysine malonylation may be involved in photosynthesis. Thus our results provide the first lysine malonylome in a photosynthetic organism and suggest a previously unexplored role of lysine malonylation in the regulation of metabolic processes and photosynthesis in Synechocystis as well as in other photosynthetic organisms. |