Research

Publications
Title: Antioxidant systems of aquatic macrophytes in three life forms: a case study in Lake Erhai, China
First author: Yuan Changbo; Zhu Tianshun; Cao Te; Xi Yilong; Zhang Xiaolin; Ni Leyi
Journal: JOURNAL OF OCEANOLOGY AND LIMNOLOGY
Years: 2019
Volume / issue: 37 /
DOI: 10.1007/s00343-019-8025-0
Abstract: Antioxidant systems are vital in life activities of macrophytes. Species with different life forms need to cope with distinct environments by modifying physiological characters, especially antioxidant systems. In order to find differences among life forms and consequence of lake eutrophication, we studied three antioxidant enzymes activity (superoxide dismutase SOD, ascorbate oxidase APX and catalase CAT) and total soluble phenolics (TP) content in leaves of 26 macrophyte species in September 2013 in Lake Erhai, China. We found that antioxidation varied accordingly with life forms. The activities of SOD and APX in emergent macrophytes (EM) and floating-leaved macrophytes (FM) were much lower than those of submerged macrophytes (SM). On the contrary, TP content was much higher in EM and FM species. There was a negative correlation between TP and antioxidant enzyme activities (CAT and APX). The results suggested that EM and FM species rely on phenolics might to adapt to adverse environments (higher herbivores predation pressure and UV radiation intensity), while SM species more rely on antioxidant enzymes possibly due to lower demand for antioxidation and/or lack of light and inorganic C availability for phenolics synthesis. We also found FM species represent highest fitness in term of antioxidant system, which would lead to overgrowth of FM species and littoral zone bogginess during lake eutrophication. Finally, it is necessary to carry out the verification experiment under the control condition in the later stage, especially for the dominant ones in eutrophic lakes, to understand the exact adaptive mechanisms of them.