Research

Publications
Title: Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation
First author: Wang, Kun; Shen, Yanjun; Yang, Yongzhi; Gan, Xiaoni; Liu, Guichun; Hu, Kuang; Li, Yongxin; Gao, Zhaoming; Zhu, Li; Yan, Guoyong; He, Lisheng; Shan, Xiujuan; Yang, Liandong; Lu, Suxiang; Zeng, Honghui; Pan, Xiangyu; Liu, Chang; Yuan, Yuan; Feng, Chenguang; Xu, Wenjie; Zhu, Chenglong; Xiao, Wuhan; Done, Yang; Wang, Wen; Qiu, Qiang; He, Shunping
Journal: NATURE ECOLOGY & EVOLUTION
Years: 2019
Volume / issue: 3 /
DOI: 10.1038/s41559-019-0864-8
Abstract: It is largely unknown how living organisms-especially vertebrates-survive and thrive in the coldness, darkness and high pressures of the hadal zone. Here, we describe the unique morphology and genome of Pseudoliparis swirei-a recently described snailfish species living below a depth of 6,000 m in the Mariana Trench. Unlike closely related shallow sea species, P. swirei has transparent, unpigmented skin and scales, thin and incompletely ossified bones, an inflated stomach and a non-closed skull. Phylogenetic analyses show that P. swirei diverged from a close relative living near the sea surface about 20 million years ago and has abundant genetic diversity. Genomic analyses reveal that: (1) the bone Gla protein (bglap) gene has a frameshift mutation that may cause early termination of cartilage calcification; (2) cell membrane fluidity and transport protein activity in P. swirei may have been enhanced by changes in protein sequences and gene expansion; and (3) the stability of its proteins may have been increased by critical mutations in the trimethylamine N-oxide-synthesizing enzyme and hsp90 chaperone protein. Our results provide insights into the morphological, physiological and molecular evolution of hadal vertebrates.