Research
Title: | Unraveling enhanced membrane lipid biosynthesis in Chlamydomonas reinhardtii starchless mutant sta6 by using an electrospray ionization mass spectrometry-based lipidomics method |
---|---|
First author: | Zang Zhengrong; Li Yanhua; Hu Qiang; Han Danxiang |
Journal: | JOURNAL OF OCEANOLOGY AND LIMNOLOGY |
Years: | 2020 |
DOI: | 10.1007/s00343-019-9138-1 |
Abstract: | The unicellular green alga Chlamydomonas reinhardtii, a well-established model organism, has been widely used in dissecting glycerolipid metabolism in oxygenating photosynthetic organisms. In previous studies, it has been found that shunting carbon precursors from the starch synthesis pathway can lead to a 10-fold increase in TAG content as compared to the wild type, but it is unknown whether inactivation of AGPase may affect membrane lipids biosynthesis. The study aims to investigate global changes in lipid metabolism and homeostasis in the starchless mutant C. reinhardtii sta6. By utilizing an electrospray ionization/mass spectrometry (ESI/MS)-based lipidomics approach, a total of 105 membrane lipid molecules of C. reinhardtii were resolved, including 16 monogalactosyldiacylglycerol (MGDG), 16 digalactosyldiacylglycerol (DGDG), 11 phosphatidylglycerol (PG), 6 sulfoquinovosyldiacylglycerol (SQDG), 49 diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), 2 phosphatidylethanolamine (PE), and 5 phosphatidylinositol (PI) molecules. The quantitative results indicated that the membrane lipid profiles were similar between the two C. reinhardtii strains grown under both low- and high-light conditions, but the cellular contents of a great number of lipids were altered in sta6 due to the defect in starch biosynthesis. Under low-light conditions, sta6 accumulated more PI, MGDG, DGDG but less amounts of DGTS as compared to WT. Under high light, sta6 cells contained higher content membrane lipids than cc-124, except for PG, which is more or less similar in both strains. Our results demonstrate that the cellular membrane lipid homeostasis underwent profound changes in the starchless mutant, and thereby its physiological impact remains to be explored. |