Research
Title: | Eutrophication and heavy metal pollution patterns in the water suppling lakes of China's south-to-north water diversion project |
---|---|
First author: | Guo, Chuanbo; Chen, Yushun; Xia, Wentong; Qu, Xiao; Yuan, Hui; Xie, Songguang; Lin, Lian-Shin |
Journal: | SCIENCE OF THE TOTAL ENVIRONMENT |
Years: | 2020 |
DOI: | 10.1016/j.scitotenv.2019.134543 |
Abstract: | This study used non-supervised machine learning self-organizing maps (SOM) in conjunction with traditional multivariate statistical techniques (e.g., hierarchical cluster analysis, principle component analysis, Pearson's correlation analysis) to investigate spatio-temporal patterns of eutrophication and heavy metal pollution in the water supplying lakes (i.e., the Gao-Bao-Shaobo Lake, GBSL) of the eastern route of China's South-to-North Water Diversion Project (SNWDP-ER). A total of 28 water quality parameters were seasonally monitored at 33 sampling sites in the GBSL during 2016 to 2017 (i.e., 132 water samples were collected in four seasons). The results indicated that: 1) spatially, the western and south-western GBSL was relatively more eutrophic and polluted with heavy metals; and 2) temporally, the lakes suffered from high risks of heavy metal contamination in spring, but eutrophication in summer while water quality in winter was the best among the four seasons. Two main potential sources of pollution and transport routes were identified and discussed based on the pollution patterns. These findings contributed considerably to providing in-depth understanding of water pollution patterns, as well as potential pollution sources in the water-supplying region. Such understanding is crucial for developing pollution control and management strategies for this mega inter-basin water transfer project. (C) 2019 Elsevier B.V. All rights reserved. |