Research
Title: | Targeted mutation of secretogranin-2 disrupts sexual behavior and reproduction in zebrafish |
---|---|
First author: | Mitchell, Kimberly; Zhang, Wo Su; Lu, Chunyu; Tao, Binbin; Chen, Lu; Hu, Wei; Trudeau, Vance L. |
Journal: | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA |
Years: | 2020 |
DOI: | 10.1073/pnas.2002004117 |
Abstract: | The luteinizing hormone surge is essential for fertility as it triggers ovulation in females and sperm release in males. We previously reported that secretoneurin-a, a neuropeptide derived from the processing of secretogranin-2a (Scg2a), stimulates luteinizing hormone release, suggesting a role in reproduction. Here we provide evidence that mutation of the scg2a and scg2b genes using TALENs in zebrafish reduces sexual behavior, ovulation, oviposition, and fertility. Large-scale spawning within-line crossings (n = 82 to 101) were conducted. Wild-type (WT) males paired with WT females successfully spawned in 62% of the breeding trials. Spawning success was reduced to 37% (P = 0.006), 44% (P = 0.0169), and 6% (P < 0.0001) for scg2a(-/-), scg2b(-/-), and scg2a(-/-);scg2b(-/-) mutants, respectively. Comprehensive video analysis indicates that scg2a(-/-);scg2b(-/-) mutation reduces all male courtship behaviors. Spawning success was 47% in saline-injected WT controls compared to 11% in saline-injected scg2a(-/-);scg2b(-/-) double mutants. For these mutants, spawning success increased 3-fold following a single intraperitoneal (i.p.) injection of synthetic secretoneurin-a (P = 0.0403) and increased 3.5-fold with injection of human chorionic gonadotropin (hCG). Embryonic survival at 24 h remained on average lower in scg2a(-/-);scg2b(-/-) fish compared to WT injected with secretoneurin-a (P < 0.001). Significant reductions in the expression of gonadotropin-releasing hormone 3 in the hypothalamus, and luteinizing hormone beta and glycoprotein alpha subunits in the pituitary provide evidence for disrupted hypothalamo-pituitary function in scg2a and scg2b mutant fish. Our results indicate that secretogranin-2 is required for optimal reproductive function and support the hypothesis that secretoneurin is a reproductive hormone. |