Research
Title: | Species range shifts in response to climate change and human pressure for the world's largest amphibian |
---|---|
First author: | Zhang, Peng; Dong, Xianghong; Grenouillet, Gael; Lek, Sovan; Zheng, Yichen; Chang, Jianbo |
Journal: | SCIENCE OF THE TOTAL ENVIRONMENT |
Years: | 2020 |
DOI: | 10.1016/j.scitotenv.2020.139543 |
Abstract: | The Chinese giant salamander, Andrias davidianus, the world's largest amphibian, is critically endangered and has an extremely unique evolutionary history. Therefore, this species represents a global conservation priority and will be impacted by future climate and human pressures. Understanding the range and response to environmental change of this species is a priority for the identification of targeted conservation activities. We projected future range shifts of the Chinese giant salamander under the independent and combined impacts of climate change and human population density (HPD) variations by using ensemble species distribution models. We further evaluated the sustainability of existing nature reserves and identified priority areas for the mitigation or prevention of such pressures. Both climate change and increasing HPD tended to reduce the species range, with the latter leading to greater range losses and fragmentation of the range. Notably, 65.6%, 18.0% and 18.4% of the range loss were attributed solely to HPD change, solely to climate change and to their overlapping impacts, respectively. Overall, the average total and net losses of the species range were 52.5% and 23.4%, respectively, and HPD and climate changes were responsible for 71.4% and 28.6% of the net losses, respectively. We investigated the stability of the remaining species range and found that half of the nature reserves are likely vulnerable, with 57.1% and 66.7% of them likely to lose their conservation value in 2050 and 2070, respectively. To effectively protect this salamander, conservation policies should address both pressures simultaneously, especially considering the negative impact of human pressures in both contemporary periods and the near future. The species range shifts over space and time projected by this research could help guide long-term surveys and the sustainable conservation of wild habitats and populations of this ancient and endangered amphibian. |