Research
Title: | Transcriptional and subcellular characterization of interferon induced protein-35 (IFP35) in mandarin fish, Siniperca chuatsi |
---|---|
First author: | Li, Li; Chen, Shan Nan; Li, Nan; Nie, P. |
Journal: | DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY |
Years: | 2021 |
DOI: | 10.1016/j.dci.2020.103877 |
Abstract: | Interferon (IFN)-stimulated genes (ISGs) exert multiple functions in immune system, and IFN-induced protein 35 (IFP35), which is a member of ISG, has been suggested to be involved in numerous cellular activities including the regulation of antiviral immunity in mammals. However, the role of IFP35 in fish innate immunity remains largely unknown. In the present study, we characterized the IFP35 gene in mandarin fish Siniperca chuatsi, which contains two conserved Nmi/IFP35 homology domains (NIDs) at C-terminus, but no leucine zipper motif, with its genomic DNA sequence consisting of eight exons and seven introns. High and constitutive mRNA level of IFP35 was observed in all examined tissues, with the highest level being observed in gills. Moreover, the IFP35 gene was significantly induced in vivo for 120 h following the infection of infectious spleen and kidney necrosis virus (ISKNV), and its mRNA and protein level was also significantly induced in vitro following the treatment of poly I: C, IFNh, IFNc, as well as IFN-gamma. The subcellular localization results indicated that exogenous IFP35 protein was mainly located in cytoplasm, while endogenous IFP35 protein was transferred into, or aggregated around, the nucleus with the induction of poly I:C or IFNs. The dual luciferase activity analysis indicated that the IFP35 promoter was activated by type I and type II IFNs through ISRE site. It is considered that IFP35 in fish is involved in antiviral, as well as in IFN-induced innate immunity. |