Research

Publications
Title: Antibiotics in aquaculture ponds from Guilin, South of China: Occurrence, distribution, and health risk assessment
First author: Chen, Jianlin; Huang, Liangliang; Wang, Qian; Zeng, Honghu; Xu, Jun; Chen, Zhongbing
Journal: ENVIRONMENTAL RESEARCH
Years: 2022
Volume / issue: /
DOI: 10.1016/j.envres.2021.112084
Abstract: Antibiotics have been widely used to prevent or treat bacterial infections in aquaculture in the past decades. However, large proportions of these compounds are excreted unchanged in feces and urine of animals, given incomplete metabolism, leading to the residual of unmetabolized compounds, and posing a potential risk to the environment. This study investigated the occurrence and distribution of seven antibiotics in surface water, sediments, fish muscle, and fish feed by high-performance liquid chromatography from the aquaculture areas in Guilin, South of China. The highest concentrations of the target antibiotics in water, sediment, fish muscle, and fish feed were 2047.53 ng/L, 13.32 mu g/kg, 35.90 mu g/kg, and 2203.97 mu g/kg, respectively. In contrast, the most abundant antibiotic was enrofloxacin (ENR), followed by ofloxacin (OFL), sulfadimidine (SMZ), and ciprofloxacin (CIP). In this work, the concentrations of antibiotics were lower than those in other breeding areas. Correlation analyses showed significant relationships between sulfadiazine (SDZ) and TP, TN, and CODCr in water. In sediment, the release of SDZ was significantly related to TN, TP, and organic matter. The risk quotient (RQ) results revealed that sulfamethoxazole (SMX), CIP, and ENR were at high risk to microorganisms in water; while, SMX and NOR were at high risk in sediments. The result from the estimated daily intakes (health risk quotient, HQ < 1) suggested that the antibiotics might not pose a risk to human health by dietary exposure assessment; however, sediments may become an accumulation reservoir of antibiotics and cause secondary pollution, of which the local management should raise awareness.